A $q$-sampling theorem related to the $q$-Hankel transform
نویسندگان
چکیده
منابع مشابه
A q-SAMPLING THEOREM AND PRODUCT FORMULA FOR CONTINUOUS q-JACOBI FUNCTIONS
In this paper we derive a q-analogue of the sampling theorem for Jacobi functions. We also establish a product formula for the nonterminating version of the q-Jacobi polynomials. The proof uses recent results in the theory of q-orthogonal polynomials and basic hypergeometric functions.
متن کاملOn the q-Laplace Transform and Related Special Functions
Abstract: Motivated by statistical mechanics contexts, we study the properties of the q-Laplace transform, which is an extension of the well-known Laplace transform. In many circumstances, the kernel function to evaluate certain integral forms has been studied. In this article, we establish relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler functio...
متن کاملThe q-Binomial Theorem and two Symmetric q-Identities
We notice two symmetric q-identities, which are special cases of the transformations of 2φ1 series in Gasper and Rahman’s book (Basic Hypergeometric Series, Cambridge University Press, 1990, p. 241). In this paper, we give combinatorial proofs of these two identities and the q-binomial theorem by using conjugation of 2-modular diagrams.
متن کاملDecision by sampling q
We present a theory of decision by sampling (DbS) in which, in contrast with traditional models, there are no underlying psychoeconomic scales. Instead, we assume that an attribute’s subjective value is constructed from a series of binary, ordinal comparisons to a sample of attribute values drawn from memory and is its rank within the sample. We assume that the sample reflects both the immediat...
متن کاملPartition Lattice q-Analogs Related to q-Stirling Numbers
Abstract We construct a family of partially ordered sets (posets) that are q-analogs of the set partition lattice. They are different from the q-analogs proposed by Dowling [5]. One of the important features of these posets is that their Whitney numbers of the first and second kind are just the q-Stirling numbers of the first and second kind, respectively. One member of this family [4] can be c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2004
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-04-07589-6